Basis Functions

Linear Systems

\[y(t) = \phi[x(t)] \]

Output:
\[\phi[x(t) + x(t)] = \phi[x(t)] + \phi[x(t)] \]

Scaling:
\[\phi[a \cdot x(t)] = a \cdot \phi[x(t)] \]

Convolution Relationship:
\[\phi[0] = 0 \]

Time Invariance

If \(\phi[x(t)] = y(t) \)

Then \(\phi[x(t - \tau)] = y(t - \tau) \)

Consistency

If \(x(t) = 0 \) for \(t < 0 \)

Then \(\phi[0] = 0 \) \(t = 0 \)

\(\Rightarrow \) if a system is linear, then the relationship between \(x(t) \) and \(y(t) \) is characterized by an integral equation \(\Rightarrow \) Convolution Integral.

Delta Function

\[\delta(t) = \begin{cases} 1 & \text{if } t = 0 \\ 0 & \text{otherwise} \end{cases} \]

Properties of the Delta Function:

\[\int_{-\infty}^{\infty} f(t) \delta(t - a) \, dt = f(a) \]

Input Response of a (linear) System

\[\Rightarrow \text{output } \phi[x(t)] \text{ when } x(t) = \delta(t) \]

\[y(t) = \phi[\delta(t)] \]

\(\Rightarrow \) Next: We show that output of any linear time-invariant system can be written as a convolution.
