GEOP 505/MATH 587 – Homework 6

The following homework is due on Monday, November 28, by 5pm.

1. Consider the Kalman filtering problem for a system with extremely simple dynamics. The state vector is of size 1 by 1. The state, x_k, is constant, and there is no random perturbation of the state. The measurements z_k are direct measurements of the state, with errors that are normally distributed with mean 0 and standard deviation σ. We begin by using the first measurement, $\hat{x}_0 = z_0$.

(a) Formulate this as a Kalman filtering problem. What are A, B, H, Q, and R?

(b) What are \hat{x}_k^- and \hat{P}_k^-?

(c) What is the optimal Kalman gain for this problem?

(d) Find a simple formula \hat{P}_k in terms of σ.

(e) Find a simple formula for \hat{x}_k in terms of the observations z_0, z_1, \ldots.

(f) How do your results in parts (d) and (e) compare with the common approach to estimating x and obtaining a “standard error of the mean” from n independent and normally distributed measurements?

2. Consider a spring–mass system governed by the second order differential equation

$$my''(t) + cy'(t) + ky(t) = F(t)$$

where $m = 1$ Kg, $c = 2$ N s/m, $k = 2$ N/m, and $F(t) = 2\sin(5t)$ N. Our best guess of the initial state of the system is that $y(0) = 0.1$ m, with a one-\(\sigma\) uncertainty of 0.05 m, and $y'(0) = 1$ m/s, with a one-\(\sigma\) uncertainty of 0.5 m/s. At times $t = 0.5, 1.0, 1.5$, we observe that $y(0.5) = 0.58$ m, $y(1.0) = 0.63$ m, and $y(3) = 0.31$ m. All of these measurements have one-\(\sigma\) uncertainties of 0.05 m.

(a) Convert this second order ODE into a system of 2 first order linear ordinary differential equations.

(b) Use Euler’s method

$$x(t + \Delta t) \approx x(t) + \Delta t x'(t)$$

to discretize the system of differential equations using time steps of $\Delta t = 0.001$ seconds. Write your discrete time dynamical system in the form

$$x_k = Ax_{k-1} + Bu_{k-1}.$$

Also determine the observation equation. What are H, Q, and R?
(c) Ignoring the observations, and using only the prediction step of the Kalman filter, predict the position of the mass at times $k = 0, 1, 2, \ldots, 2001$ (that is, for the first two seconds.) Plot your prediction of the position and velocity of the mass with associated one-σ error bars. What is your predicted position at time $t = 2$ seconds?

(d) Now, repeat the prediction using the three observations. Plot your prediction with with associated error bars. What is your predicted position at time $t = 2$ seconds? How much do these observations improve the prediction?