Parameter Estimation and Inverse Problems

Richard C. Aster, Brian Borchers, and Clifford Thurber

June 9, 2004

©2002-2004, Aster, Borchers, and Thurber
Preface

This textbook evolved from a course in geophysical inverse methods taught during the past decade at New Mexico Tech, first by Rick Aster and, for the last five years, jointly between Rick Aster and Brian Borchers. The audience for the course has included a broad range of first- or second-year graduate students (and occasionally advanced undergraduates) from geophysics, hydrology, mathematics, astronomy, and other disciplines. Cliff Thurber joined this collaboration during the past three years and has taught a similar course at the University of Wisconsin.

Our principal goal for this text is to promote fundamental understanding of parameter estimation and inverse problem philosophy and methodology, specifically regarding such key issues as uncertainty, ill-posedness, regularization, bias, and resolution. We emphasize theoretical points with illustrative examples, and MATLAB codes that implement these examples are provided on a companion CD. Throughout the examples and exercises, a CD icon indicates that there is additional material on the CD. Exercises include a mix of programming and theoretical problems.

This book has necessarily had to distill a tremendous body of mathematics and science going back to (at least) Newton and Gauss. We hope that it will find a broad audience of students and professionals interested in the general problem of estimating physical models from data. Because this is an introductory text surveying a very broad field, we have not been able to go into great depth. However, each chapter has a “notes and further reading” section to help guide the reader to further exploration of specific topics. Where appropriate, we have also directly referenced research contributions to the field.

Some advanced topics have been deliberately omitted from the book because of space limitations and/or because we expect that many readers would not be sufficiently familiar with the required mathematics. For example, readers with a strong mathematical background may be surprised that we consider only inverse problems with discrete data and discretized models. By doing this we avoid the much of the technical complexity of functional analysis. Some advanced applications and topics that we have omitted include inverse scattering problems, seismic diffraction tomography, wavelets, data assimilation, and expectation maximization (EM) methods.

We expect that readers of this book will have prior familiarity with calculus, differential equations, linear algebra, probability, and statistics at the
undergraduate level. In our experience, many students are in need of at least a review of these topics, and we typically spend the first two to three weeks of the course reviewing this material from Appendices A, B, and C.

Chapters 1 through 5 form the heart of the book, and should be covered in sequence. Chapters 6, 7, and 8 are independent of each other, but depend strongly on the material in Chapters 1 through 5. As such, they may be covered in any order. Chapters 9 and 10 are independent of Chapters 6 through 8, but are most appropriately covered in sequence. Chapter 11 is independent of the specifics of Chapters 6 through 10, and provides an alternate view on, and summary of, key statistical and inverse theory issues.

If significant time is allotted for review of linear algebra, vector calculus, probability, and statistics in the appendices, there will probably not be time to cover the entire book in one semester. However, it should be possible for teachers to cover the majority of the material by selectively using material in the chapters following Chapter 5.

We especially wish to acknowledge our own professors and mentors in this field, including Kei Aki, Robert Parker, and Peter Shearer. We thank our many colleagues, including our own students, who provided sustained encouragement and feedback, particularly James Beck, Elena Resmerita, Charlotte Rowe, Tyson Strand, and Suzan van der Lee. Stuart Anderson, Greg Beroza, Ken Creager, Ken Dueker, Eliza Michalopoulou, Paul Segall, Anne Sheehan, and Kristy Tiampo deserve special mention for their classroom testing of early versions of this text. Robert Nowack, Gary Pavlis, Randall Richardson, and Steve Roecker provided thorough reviews that substantially improved the final manuscript. We offer special thanks to Per Christian Hansen of the Technical University of Denmark for collaboration in the incorporation of his Regularization Tools, which we highly recommend as an adjunct to this text. We also thank the editorial staff at Academic Press, especially Frank Cynar and Jennifer Hele, for essential advice and direction. Suzanne Borchers and Susan Delap provided valuable proofreading and graphics expertise. Brian Borchers was a visiting fellow at the Institute for Pure and Applied Mathematics (IPAM) at UCLA, and Rick Aster was partially supported by the New Mexico Tech Geophysical Research Center during the preparation of the text.

Rick Aster, Brian Borchers, and Cliff Thurber
June, 2004
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Classification of Inverse Problems</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Examples of Parameter Estimation Problems</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Examples of Inverse Problems</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Why Inverse Problems are Hard</td>
<td>12</td>
</tr>
<tr>
<td>1.5 Exercises</td>
<td>16</td>
</tr>
<tr>
<td>1.6 Notes and Further Reading</td>
<td>16</td>
</tr>
<tr>
<td>2 Linear Regression</td>
<td>17</td>
</tr>
<tr>
<td>2.1 Introduction to Linear Regression</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Statistical Aspects of Least Squares</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Unknown Measurement Standard Deviations</td>
<td>28</td>
</tr>
<tr>
<td>2.4 L_1 Regression</td>
<td>30</td>
</tr>
<tr>
<td>2.5 Monte Carlo Error Propagation</td>
<td>37</td>
</tr>
<tr>
<td>2.6 Exercises</td>
<td>38</td>
</tr>
<tr>
<td>2.7 Notes and Further Reading</td>
<td>42</td>
</tr>
<tr>
<td>3 Discretizing Continuous Inverse Problems</td>
<td>43</td>
</tr>
<tr>
<td>3.1 Integral Equations</td>
<td>43</td>
</tr>
<tr>
<td>3.2 Quadrature Methods</td>
<td>44</td>
</tr>
<tr>
<td>3.3 Expansion in Terms of Representers</td>
<td>49</td>
</tr>
<tr>
<td>3.4 Expansion in Terms of Orthonormal Basis Functions</td>
<td>50</td>
</tr>
<tr>
<td>3.5 The Method of Backus and Gilbert</td>
<td>51</td>
</tr>
<tr>
<td>3.6 Exercises</td>
<td>54</td>
</tr>
<tr>
<td>3.7 Notes and Further Reading</td>
<td>56</td>
</tr>
<tr>
<td>4 Rank Deficiency and Ill–Conditioning</td>
<td>59</td>
</tr>
<tr>
<td>4.1 The SVD and the Generalized Inverse</td>
<td>59</td>
</tr>
<tr>
<td>4.2 Covariance and Resolution of the Generalized Inverse Solution</td>
<td>65</td>
</tr>
<tr>
<td>4.3 Instability of the Generalized Inverse Solution</td>
<td>68</td>
</tr>
<tr>
<td>4.4 An Example of a Rank Deficient Problem</td>
<td>71</td>
</tr>
<tr>
<td>4.5 Discrete Ill-Posed Problems</td>
<td>78</td>
</tr>
</tbody>
</table>
CONTENTS

4.6 Exercises ... 94
4.7 Notes and Further Reading 96

5 Tikhonov Regularization 99
5.1 Selecting a Good Solution 100
5.2 SVD Implementation of Tikhonov Regularization 101
5.3 Resolution, Bias, and Uncertainty in the Tikhonov Solution 106
5.4 Higher–Order Tikhonov Regularization 108
5.5 Resolution in Higher–Order Tikhonov Regularization 116
5.6 The TGSVD Method 118
5.7 Generalized Cross Validation 121
5.8 Error Bounds 125
5.9 Exercises .. 128
5.10 Notes and Further Reading 132

6 Iterative Methods 133
6.1 Introduction 133
6.2 Iterative Methods for Tomography Problems 134
6.3 The Conjugate Gradient Method 141
6.4 The CGLS Method 146
6.5 Exercises .. 151
6.6 Notes and Further Reading 152

7 Additional Regularization Techniques 155
7.1 Using Bounds as Constraints 155
7.2 Maximum Entropy Regularization 157
7.3 Total Variation 165
7.4 Exercises .. 170
7.5 Notes and Further Reading 171

8 Fourier Techniques 173
8.1 Linear Systems in the Time and Frequency Domains 173
8.2 Deconvolution from a Fourier Perspective 178
8.3 Linear Systems in Discrete Time 181
8.4 Water Level Regularization 185
8.5 Exercises .. 190
8.6 Notes and Further Reading 192

9 Nonlinear Regression 193
9.1 Newton’s Method 193
9.2 The Gauss–Newton and Levenberg–Marquardt Methods 196
9.3 Statistical Aspects 199
9.4 Implementation Issues 201
9.5 Exercises .. 210
9.6 Notes and Further Reading 214
10 Nonlinear Inverse Problems 215
 10.1 Regularizing Nonlinear Least Squares Problems 215
 10.2 Occam’s Inversion ... 220
 10.3 Exercises .. 225
 10.4 Notes and Further Reading 226

11 Bayesian Methods 227
 11.1 Review of the Classical Approach 227
 11.2 The Bayesian Approach 229
 11.3 The Multivariate Normal Case 233
 11.4 Maximum Entropy Methods 239
 11.5 Epilogue ... 241
 11.6 Exercises .. 243
 11.7 Notes and Further Reading 245

A Review of Linear Algebra 247
 A.1 Systems of Linear Equations 247
 A.2 Matrix and Vector Algebra 250
 A.3 Linear Independence ... 256
 A.4 Subspaces of \mathbb{R}^n 257
 A.5 Orthogonality and the Dot Product 262
 A.6 Eigenvalues and Eigenvectors 267
 A.7 Vector and Matrix Norms 269
 A.8 The Condition Number of a Linear System 272
 A.9 The QR Factorization 273
 A.10 Linear Algebra in Spaces of Functions 275
 A.11 Exercises .. 276
 A.12 Notes and Further Reading 278

B Review of Probability and Statistics 281
 B.1 Probability and Random Variables 281
 B.2 Expected Value and Variance 288
 B.3 Joint Distributions ... 289
 B.4 Conditional Probability 293
 B.5 The Multivariate Normal Distribution 296
 B.6 The Central Limit Theorem 297
 B.7 Testing for Normality 297
 B.8 Estimating Means and Confidence Intervals 300
 B.9 Hypothesis Tests ... 301
 B.10 Exercises .. 303
 B.11 Notes and Further Reading 305
C Review of Vector Calculus 307
 C.1 The Gradient, Hessian, and Jacobian 307
 C.2 Taylor’s Theorem . 309
 C.3 Lagrange Multipliers . 310
 C.4 Exercises . 313
 C.5 Notes and Further Reading . 314

D Glossary of Notation 315

Bibliography 316

Index 330