Poles and Zeros

We showed that for any linear system relating two time functions, $x(t)$ and $y(t)$, the frequency-domain response (the transfer function) can be obtained from the governing linear differential equation with constant coefficients of a single variable

$$a_n \frac{d^ny}{dt^n} + a_{n-1} \frac{d^{n-1}y}{dt^{n-1}} + \cdots + a_1 \frac{dy}{dt} + a_0 y = b_m \frac{d^mx}{dt^m} + b_{m-1} \frac{d^{m-1}x}{dt^{m-1}} + \cdots + b_1 \frac{dx}{dt} + b_0 x. \quad (1)$$

Setting

$$x(t) = e^{i2\pi ft}, \quad (2)$$
$$y(t) = \Phi(f)e^{i2\pi ft}, \quad (3)$$

and solving (1) for $\Phi(f)$ gives the transfer function

$$\Phi(f) = \frac{Y(f)}{X(f)} = \frac{\sum_{j=0}^{m} b_j (2\pi ft)^j}{\sum_{k=0}^{n} a_k (2\pi ft)^k} \equiv \frac{Z(f)}{P(f)} \quad (4)$$

where Z and P are complex polynomials in f. The values of f (or equivalently, of the angular frequency $\omega = 2\pi f$) where $Z(f) = 0$ are referred to as zeros of (4), as the response of the system will be zero at those frequencies, no matter what the amplitude of the input. Frequencies for which $P(f) = 0$ are referred to as poles of (4), as the response of the system will be infinite at those frequencies.

In general, the values of f where we have poles and zeros will be complex. If we express the polynomials in (4) in terms of if (or equivalently, $i2\pi f$), then we have real coefficients, and the roots after this change of variables will be real or complex conjugate pairs. It is useful to express the input function (2) as

$$x(t) = e^{i2\pi ft} = e^{i2\pi(f_r + if_i)t} = e^{i2\pi f_r t} \cdot e^{-2\pi f_i t} \quad (5)$$

where $f = f_r + if_i$ and f_r and f_i are real numbers.

This generalized input is:

- A constant for $f = 0$
• A sinusoid for \(f_r \neq 0 \) and \(f_i = 0 \).
• A growing exponential for \(f_r = 0 \) and \(f_i < 0 \)
• A shrinking exponential for \(f_r = 0 \) and \(f_i > 0 \)
• A growing exponentially weighted sinusoid for \(f_r \neq 0 \) and \(f_i < 0 \)
• A shrinking exponentially weighted sinusoid for \(f_r \neq 0 \) and \(f_i > 0 \)

Pole positions are usually displayed graphically in the complex plane using the Laplace transform convention

\[s = \tau 2\pi f = \sigma + \omega = 2\pi (-f_i + i f_r) \quad . \] (6)

the positions of the poles in \(s \) in the complex plane are an especially useful and compact way to characterize the response of a linear system. Making the substitution (6, and normalizing the leading coefficients of the polynomials, gives us a transfer function expression

\[\Phi(s) = \frac{Y(s)}{X(s)} = \left(\frac{b_m}{a_n}\right) \frac{\sum_{j=0}^{m} (b_j/b_m)s^j}{\sum_{k=0}^{n} (a_k/a_n)s^k} = K \frac{Z(s)}{P(s)} \] (7)

where \(K = b_m/a_n \) is a scalar gain factor.

The complex roots in \(s \) of the numerator and denominator of (7) will be either real, or will be complex conjugate pairs if the coefficients are real (or equivalently, if the original impulse response is real-valued).

Systems where all pole frequencies have \(\sigma < 0 \) (\(f_i > 0 \), so that the poles lie on the left-hand side of the \(z \) plane, are stable. In this case the only way to get an infinite output is to drive the system with an exponentially increasing sinusoidal input. The impulse response of such a system will always decay back to zero.

On the other hand, systems where all pole frequencies have \(\sigma > 0 \) (\(f_i < 0 \), so that the poles lie on the right-hand side of the \(z \) plane, are unstable; we obtain an infinite output even when the input is exponentially decaying. The impulse response of such systems increases in amplitude with time.

Systems where \(\sigma = 0 \) and \(\omega \neq 0 \) (\(f_i = 0 \) and \(f_r \neq 0 \)) have pole frequency responses that are sinusoidal. Such systems will oscillate forever once they get (even marginally) excited at their resonant frequencies.

Figure (1) shows \(z \)-pole locations and cartoon impulse responses for various 2-pole systems.
Figure 1: Pole locations and system stability for 2-pole systems, real-valued impulse response. Sketched time functions show oscillation and decay characteristics of the corresponding impulse responses.